Bibliography

Andrews, T. J., Watson, D. M., Rice, G. E., & Hartley, T. (2015). Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. Journal of Vision, 15(7), 3–3.

Auckland, M. E., Cave, K. R., & Donnelly, N. (2007). Nontarget objects can influence perceptual processes during object recognition. Psychon. Bull. Rev., 14(2), 332–337.

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLoS Computational Biology, 14(12), e1006613.

Bao, P., She, L., McGill, M., & Tsao, D. Y. (2020). A map of object space in primate inferotemporal cortex. Nature.

Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci., 15(4), 600–609.

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.

Bar, M., & Ullman, S. (1996). Spatial context in recognition. Perception, 25(3), 343–352.

Biederman, I. (1972). Perceiving Real-World scenes. Science, 177(4043), 77–80.

Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cogn. Psychol., 14(2), 143–177.

Bodamer, J. (1947). Die prosop-agnosie. Archiv Für Psychiatrie Und Nervenkrankheiten, 179(1-2), 6–53.

Boehler, C. N., Schoenfeld, M. a, Heinze, H.-J., & Hopf, J.-M. (2008). Rapid recurrent processing gates awareness in primary visual cortex. Proc. Natl. Acad. Sci. U. S. A., 105(25), 8742–8747.

Brady, N., & Field, D. J. (2000). Local contrast in natural images: Normalisation and coding efficiency. Perception, 29(9), 1041–1055.

Breitmeyer, B. G., & Ogmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Percept. Psychophys., 62(8), 1572–1595.

Cadieu, C. F., Hong, H., Yamins, D. L. K., Pinto, N., Ardila, D., Solomon, E. A., Majaj, N. J., & DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol., 10(12), e1003963.

Camprodon, J. A., Zohary, E., Brodbeck, V., & Pascual-Leone, A. (2010). Two phases of V1 activity for visual recognition of natural images. J. Cogn. Neurosci., 22(6), 1262–1269.

Camprodon, J. A., Zohary, E., Brodbeck, V., & Pascual-leone, A. (2013). Two phases of V1 activity for visual recognition of natural images. 18(9), 1199–1216.

Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cogn. Neuropsychol., 20(3), 213–261.

Caramazza, A., Hillis, A. E., Rapp, B. C., & Romani, C. (1990). The multiple semantics hypothesis: Multiple confusions? Cogn. Neuropsychol., 7(3), 161–189.

Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain the animate-inanimate distinction. J. Cogn. Neurosci., 10(1), 1–34.

Castelhano, M. S., & Heaven, C. (2010). The relative contribution of scene context and target features to visual search in scenes. Atten. Percept. Psychophys., 72(5), 1283–1297.

Chadwick, A., Heywood, C., Smithson, H., & Kentridge, R. (2019). Translucence perception is not dependent on cortical areas critical for processing colour or texture. Neuropsychologia, 128, 209–214.

Chollet, F., & Others. (2015). Keras.

Chow-Wing-Bom, H. T., Scholte, S., De Klerk, C., Mareschal, D., Groen, I. I. A., & Dekker, T. (2019). Development of rapid extraction of scene gist. PERCEPTION, 48, 40–41.

Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences, 23(4), 305–317.

Cichy, R. M., Khosla, A., Pantazis, D., & Oliva, A. (2017). Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. Neuroimage, 153, 346–358.

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nat. Neurosci., 17(3), 1–10.

Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-Based fusion of MEG and fMRI reveals Spatio-Temporal dynamics in human cortex during visual object recognition. Cereb. Cortex, 26(8), 3563–3579.

Contini, E. W., Wardle, S. G., & Carlson, T. A. (2017). Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions. Neuropsychologia, 105, 165–176.

Crouzet, S. M., & Serre, T. (2011). What are the visual features underlying rapid object recognition? Front. Psychol., 2, 326.

Davenport, J. L. (2007). Consistency effects between objects in scenes. Mem. Cognit., 35(3), 393–401.

Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychol. Sci., 15(8), 559–564.

De Haan, E. H. F., & Cowey, A. (2011). On the usefulness of “what” and “where” pathways in vision. Trends Cogn. Sci., 15(10), 460–466.

De Haan, E. H., Seijdel, N., Kentridge, R. W., & Heywood, C. A. (2020). Plasticity versus chronicity: Stable performance on category fluency 40 years post-onset. Journal of Neuropsychology, 14(1), 20–27.

Dejerine, J. (1892). Contribution à l’étude anatomopathologique et clinique des différents variétés de cécité verbale. Mémoires de La Société de Biologie, 4, 61–90.

Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol., 5(10), e260.

Deng, J. D. J., Dong, W. D. W., Socher, R., Li, L.-J. L. L.-J., Li, K. L. K., & Fei-Fei, L. F.-F. L. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2–9.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends Cogn. Sci., 11(8), 333–341.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415–434.

Doerig, A., Bornet, A., Rosenholtz, R., Francis, G., Clarke, A. M., & Herzog, M. H. (2019). Beyond bouma’s window: How to explain global aspects of crowding? PLoS Comput. Biol., 15(5), e1006580.

Downing, P. E., Chan, A.-Y., Peelen, M., Dodds, C., & Kanwisher, N. (2006). Domain specificity in visual cortex. Cerebral Cortex, 16(10), 1453–1461.

Eickenberg, M., Gramfort, A., Varoquaux, G., & Thirion, B. (2017). Seeing it all: Convolutional network layers map the function of the human visual system. Neuroimage, 152, 184–194.

Epshtein, B., Lifshitz, I., & Ullman, S. (2008). Image interpretation by a single bottom-up top-down cycle. Proc. Natl. Acad. Sci. U. S. A., 105(38), 14298–14303.

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598–601.

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. (2007). Masking disrupts reentrant processing in human visual cortex. J. Cogn. Neurosci., 19(9), 1488–1497.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, 1(1), 1–47.

Felsen, G., & Dan, Y. (2005). A natural approach to studying vision. Nat. Neurosci., 8(12), 1643–1646.

Felsen, G., Touryan, J., Han, F., & Dan, Y. (2005). Cortical sensitivity to visual features in natural scenes. PLoS Biol., 3(10), 1819–1828.

Fink, M., & Perona, P. (2004). Mutual boosting for contextual inference. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems 16 (pp. 1515–1522). MIT Press.

Gaffan, D., & Heywood, C. A. (1993). A spurious category-specific visual agnosia for living things in normal human and nonhuman primates. J. Cogn. Neurosci., 5(1), 118–128.

Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: A review. Cortex, 36(4), 539–559.

Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., & Wichmann, F. A. (2017). Comparing deep neural networks against humans: Object recognition when the signal gets weaker. arXiv Preprint arXiv:1706.06969.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv Preprint arXiv:1811.12231.

Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. (2018). Generalisation in humans and deep neural networks. Advances in Neural Information Processing Systems, 7538–7550.

Geisler, W. S., & Diehl, R. L. (2003). A bayesian approach to the evolution of perceptual and cognitive systems. Cogn. Sci., 27(3), 379–402.

Gerlach, C. (2001). Structural similarity causes different category-effects depending on task characteristics. Neuropsychologia, 39(9), 895–900.

Gerlach, C. (2009). Category-specificity in visual object recognition. Cognition, 111(3), 281–301.

Ghebreab, S., Scholte, S., Lamme, V., & Smeulders, A. (2009). A biologically plausible model for rapid natural scene identification. Adv. Neural Inf. Process. Syst., 629–637.

Ghodrati, M., Farzmahdi, A., Rajaei, K., Ebrahimpour, R., & Khaligh-Razavi, S.-M. (2014). Feedforward object-vision models only tolerate small image variations compared to human. Front. Comput. Neurosci., 8, 74.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annu. Rev. Neurosci., 30, 535–574.

Goodale, M. A., Milner, A. D., & others. (1992). Separate visual pathways for perception and action.

Greene, M. R., Botros, A. P., Beck, D. M., & Fei-Fei, L. (2015). What you see is what you expect: Rapid scene understanding benefits from prior experience. Atten. Percept. Psychophys., 1239–1251.

Greene, M. R., & Oliva, A. (2009a). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cogn. Psychol., 58(2), 137–176.

Greene, M. R., & Oliva, A. (2009b). The briefest of glances: The time course of natural scene understanding. Psychol. Sci., 20(4), 464–472.

Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. 20.

Groen, I. I. A., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2010). The role of weibull image statistics in rapid object detection in natural scenes. J. Vis., 10(7), 992–992.

Groen, I. I. A., Ghebreab, S., Lamme, V. A. F., & Scholte, H. S. (2016). The time course of natural scene perception with reduced attention. J. Neurophysiol., 115(2), 931–946.

Groen, I. I. A., Ghebreab, S., Prins, H., Lamme, V. A. F., & Scholte, H. S. (2013). From image statistics to scene gist: Evoked neural activity reveals transition from Low-Level natural image structure to scene category. Journal of Neuroscience, 33(48), 18814–18824.

Groen, I. I. A., Greene, M. R., Baldassano, C., Fei-Fei, L., Beck, D. M., & Baker, C. I. (2018). Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. Elife, 7, e32962.

Groen, I. I. A., Jahfari, S., Seijdel, N., Ghebreab, S., Lamme, V. A., & Scholte, H. S. (2018). Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 14(12), e1006690.

Groen, I. I. A., Silson, E. H., & Baker, C. I. (2017). Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372(1714).

Güçlü, U., & Gerven, M. A. J. van. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014.

Güçlü, U., & Gerven, M. A. J. van. (2017). Modeling the dynamics of human brain activity with recurrent neural networks. Front. Comput. Neurosci., 11, 7.

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci., 9(6), 467–479.

Hegdé, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405–439.

Herzog, M. H., & Clarke, A. M. (2014). Why vision is not both hierarchical and feedforward. Front. Comput. Neurosci., 8, 135.

Heydt, R. von der. (2015). Figure–ground organization and the emergence of proto-objects in the visual cortex. Front. Psychol., 6, 10391.

Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.

Howe, P. D. L. (2017). Natural scenes can be identified as rapidly as individual features. Atten. Percept. Psychophys., 79(6), 1674–1681.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.

Jackson, J. H. (1876). Clinical and physiological researches on the nervous system. I. On the localisation of movements in the brain.

Jahfari, S., Ridderinkhof, K. R., & Scholte, H. S. (2013). Spatial frequency information modulates response inhibition and decision-making processes. PLoS One, 8(10), e76467.

Jahfari, S., Waldorp, L., Ridderinkhof, K. R., & Scholte, H. S. (2015). Visual information shapes the dynamics of corticobasal ganglia pathways during response selection and inhibition. J. Cogn. Neurosci., 1344–1359.

Jegou, H., Douze, M., & Schmid, C. (2008). Hamming embedding and weak geometric consistency for large scale image search. European Conference on Computer Vision, 5302 LNCS(PART 1), 304–317.

Jones, E., Oliphant, T., Peterson, P., & Others. (2001). SciPy: Open source scientific tools for python.

Joubert, O. R., Fize, D., Rousselet, G. A., & Fabre-Thorpe, M. (2008). Early interference of context congruence on object processing in rapid visual categorization of natural scenes. J. Vis., 8(13), 11.1–18.

Kaiser, D., & Cichy, R. M. (2018). Typical visual-field locations facilitate access to awareness for everyday objects. Cognition, 180, 118–122.

Kaiser, D., Quek, G. L., Cichy, R. M., & Peelen, M. V. (2019). Object vision in a structured world. Trends Cogn. Sci.

Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., & DiCarlo, J. J. (2019). Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nat. Neurosci., 22(6), 974–983.

Katti, H., Peelen, M. V., & Arun, S. P. (2019). Machine vision benefits from human contextual expectations. Sci. Rep., 9(1), 2112.

Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol., 10(11), e1003915.

Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., & Masquelier, T. (2016). Deep networks can resemble human feed-forward vision in invariant object recognition. Sci. Rep., 6, 32672.

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2019). Deep neural networks in computational neuroscience. In Oxford research encyclopedia of neuroscience.

Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K. A., Cichy, R. M., Hauk, O., & Kriegeskorte, N. (2019). Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl. Acad. Sci. U. S. A., 116(43), 21854–21863.

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Res., 46(11), 1762–1776.

Kleist, K. (1934). Gehirnpathologie.

Koivisto, M., Kastrati, G., & Revonsuo, A. (2014). Recurrent processing enhances visual awareness but is not necessary for fast categorization of natural scenes. J. Cogn. Neurosci., 26(2), 223–231.

Koivisto, M., Railo, H., Revonsuo, A., Vanni, S., & Salminen-Vaparanta, N. (2011). Recurrent processing in V1/V2 contributes to categorization of natural scenes. J. Neurosci., 31(7), 2488–2492.

Koivisto, M., & Revonsuo, A. (2010). Event-related brain potential correlates of visual awareness. In Neuroscience & Biobehavioral Reviews (Nos. 6; Vol. 34, pp. 922–934).

Konkle, T., & Oliva, A. (2012). A real-world size organization of object responses in occipitotemporal cortex. Neuron, 74(6), 1114–1124.

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modelling biological vision and brain information processing. In bioRxiv (p. 029876).

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097–1105.

Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol., 12(4), e1004896.

Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., & others. (2018). CORnet: Modeling the neural mechanisms of core object recognition. BioRxiv.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Duerig, T., & Ferrari, V. (2018). The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. http://arxiv.org/abs/1811.00982

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., & others. (2020). The open images dataset v4. International Journal of Computer Vision, 1–26.

Lamme, V. a F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci., 23(11), 571–579.

Lamme, V. A. F., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1. J. Cogn. Neurosci., 14(7), 1044–1053.

Lauer, T., Cornelissen, T. H., Draschkow, D., Willenbockel, V., & Võ, M. L.-H. (2018). The role of scene summary statistics in object recognition. Scientific Reports, 8(1), 1–12.

Låg, T. (2005). Category-specific effects in object identification: What is “normal”? Cortex, 41(6), 833–841.

Lewandowsky, M. (1908). Ueber abspaltung des farbensinnes. European Neurology, 23(6), 488–510.

Liao, Q., & Poggio, T. (2016). Bridging the gaps between residual learning, recurrent neural networks and visual cortex. http://arxiv.org/abs/1604.03640

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. Computer Vision – ECCV 2014, 740–755.

Lindsay, G. (2020). Convolutional neural networks as a model of the visual system: Past, present, and future. J. Cogn. Neurosci., 1–15.

Lindsay, G. W., & Miller, K. D. (2018). How biological attention mechanisms improve task performance in a large-scale visual system model. ELife, 7, e38105.

Long, B., Yu, C.-P., & Konkle, T. (2018). Mid-level visual features underlie the high-level categorical organization of the ventral stream. Proceedings of the National Academy of Sciences, 115(38), E9015–E9024.

Macé, M. J.-M., Joubert, O. R., Nespoulous, J.-L., & Fabre-Thorpe, M. (2009). The time-course of visual categorizations: You spot the animal faster than the bird. PloS One, 4(6), e5927.

Mack, A., Tuma, R., Kahn, S., & Rock, I. (1990). Perceptual grouping and attention. Bulletin of the Psychonomic Society, 28, 500–500.

Mahon, B. Z., Anzellotti, S., Schwarzbach, J., Zampini, M., & Caramazza, A. (2009). Category-specific organization in the human brain does not require visual experience. Neuron, 63(3), 397–405.

Malcolm, G. L., Groen, I. I. A., & Baker, C. I. (2016). Making sense of real-world scenes. Trends Cogn. Sci., 20(11), 843–856.

Malcolm, G. L., Nuthmann, A., & Schyns, P. G. (2014). Beyond gist: Strategic and incremental information accumulation for scene categorization. Psychol. Sci., 25(5), 1087–1097.

McKinney, W., & Others. (2010). Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, 445, 51–56.

Mehrer, J., Spoerer, C. J., Kriegeskorte, N., & Kietzmann, T. C. (2020). Individual differences among deep neural network models. In bioRxiv (p. 2020.01.08.898288).

Mehta, Z., Newcombe, F., & De Haan, E. (1992). Selective loss of imagery in a case of visual agnosia. Neuropsychologia, 30(7), 645–655.

Mollon, J., Newcombe, F., Polden, P., & Ratcliff, G. (1980). On the presence of three cone mechanisms in a case of total achromatopsia. Colour Vision Deficiencies, 5, 130–135.

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. J. Neurosci., 32(7), 2335–2343.

Munneke, J., Brentari, V., & Peelen, M. V. (2013). The influence of scene context on object recognition is independent of attentional focus. Front. Psychol., 4, 552.

Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Res., 46(5), 614–621.

Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually specified events. Cogn. Psychol., 7(4), 480–494.

Newcombe, F. (1969). Missile wounds of the brain: A study of psychological deficits.

Newcombe, F., Young, A. W., & De Haan, E. H. (1989). Prosopagnosia and object agnosia without covert recognition. Neuropsychologia, 27(2), 179–191.

Nielsen, J. M. (1946). Agnosia, apraxia, aphasia: Their value in cerebral localization.

Oliphant, T. E. (2006). A guide to NumPy (Vol. 1). Trelgol Publishing USA.

Oliva, A. (2005). Gist of the scene. In Neurobiology of attention (pp. 251–256). Elsevier.

Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cogn. Psychol., 34(1), 72–107.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis., 42(3), 145–175.

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.

Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends Cogn. Sci., 11(12), 520–527.

Olmos, A., & Kingdom, F. A. A. (2004). A biologically inspired algorithm for the recovery of shading and reflectance images. Perception, 33(12), 1463–1473.

Olshausen, B. A., & Field, D. J. (1996). Natural image statistics and efficient coding. Network: Computation in Neural Systems, 7(2), 333–339.

Opelt, A., Pinz, A., Fussenegger, M., & Auer, P. (2006). Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell., 28(3), 416–431.

Panis, S., Torfs, K., Gillebert, C. R., Wagemans, J., & Humphreys, G. W. (2017). Neuropsychological evidence for the temporal dynamics of category-specific naming. Vis. Cogn., 25(1-3), 79–99.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & others. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 8024–8035.

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol., 72(2), 184–187.

Petro, L. S., Vizioli, L., & Muckli, L. (2014). Contributions of cortical feedback to sensory processing in primary visual cortex. Front. Psychol., 5, 1223.

Potter, M. C. (1975). Meaning in visual search. Science, 187(4180), 965–966.

Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. J. Exp. Psychol., 81(1), 10–15.

Pozzi, I., Bohté, S., & Roelfsema, P. (2018). A biologically plausible learning rule for deep learning in the brain. arXiv Preprint arXiv:1811.01768.

Rajaei, K., Mohsenzadeh, Y., Ebrahimpour, R., & Khaligh-Razavi, S.-M. (2019). Beyond core object recognition: Recurrent processes account for object recognition under occlusion. PLoS Comput. Biol., 15(5), e1007001.

Ramakrishnan, K., Scholte, H. S., Groen, I. I. A., Smeulders, a W. M., & Ghebreab, S. (2016). Summary statistics of deep neural network predict temporal dynamics of object recognition.

Ratcliff, G. (1982). Object recognition: Some deductions from the clinical evidence. Normality and Pathology in Cognitive Functions.

Ratcliff, R. (2014). Measuring psychometric functions with the diffusion model. J. Exp. Psychol. Hum. Percept. Perform., 40(2), 870.

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for the Two-Choice diffusion model of decision making. Decision (Wash D C ), 2015.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for Two-Choice decision tasks. Neural Comput., 29(6), 997–1003.

Rémy, F., Saint-Aubert, L., Bacon-Macé, N., Vayssière, N., Barbeau, E., & Fabre-Thorpe, M. (2013). Object recognition in congruent and incongruent natural scenes: A life-span study. Vision Res., 91, 36–44.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci., 2(11), 1019–1025.

Roelfsema, P. R., Scholte, H. S., & Spekreijse, H. (1999). Temporal constraints on the grouping of contour segments into spatially extended objects. Vision Res., 39(8), 1509–1529.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8(3), 382–439.

Rosenholtz, R., Huang, J., Raj, A., Balas, B. J., & Ilie, L. (2012). A summary statistic representation in peripheral vision explains visual search. J. Vis., 12(4).

Rousselet, G., Joubert, O., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scenes? Visual Cognition, 12(6), 852–877.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3), 211–252.

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: A database and Web-Based tool for image annotation. Int. J. Comput. Vis., 77(1-3), 157–173.

Sartori, G., Job, R., Miozzo, M., Zago, S., & Marchiori, G. (1993). Category-specific form-knowledge deficit in a patient with herpes simplex virus encephalitis. J. Clin. Exp. Neuropsychol., 15(2), 280–299.

Scholte, H. S. (2018). Fantastic DNimals and where to find them. In NeuroImage (Vol. 180, pp. 112–113).

Scholte, H. S., Ghebreab, S., Waldorp, L., Smeulders, A. W. M., & Lamme, V. A. F. (2009). Brain responses strongly correlate with weibull image statistics when processing natural images. J. Vis., 9(4), 29–29.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K., & DiCarlo, J. J. (2018). Brain-Score: Which artificial neural network for object recognition is most Brain-Like? In bioRxiv (p. 407007).

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference, 57, 61.

Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-M., Bosch, S., & Van Gerven, M. (2018). Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage, 180, 253–266.

Seibert, D., Yamins, D., Ardila, D., Hong, H., DiCarlo, J. J., & Gardner, J. L. (2016). A performance-optimized model of neural responses across the ventral visual stream. bioRxiv, 036475.

Self, M. W., Jeurissen, D., Ham, A. F. van, Vugt, B. van, Poort, J., & Roelfsema, P. R. (2019). The segmentation of Proto-Objects in the monkey primary visual cortex. Curr. Biol., 29(6), 1019–1029.e4.

Self, M. W., & Roelfsema, P. R. (2014). The neural mechanisms of figure-ground segregation. In Oxford Handbooks Online.

Serre, T. (2019). Deep learning: The good, the bad, and the ugly. Annual Review of Vision Science, 5, 399–426.

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., & Poggio, T. (2005). A theory of object recognition: Computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Artif. Intell., December, 1–130.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104(15), 6424–6429.

Shoben, E. J. (1982). Semantic and lexical decisions. In Handbook of Research Methods in Human Memory and Cognition (pp. 287–314).

Smits, A. R., Seijdel, N., Scholte, H. S., Heywood, C. A., Kentridge, R. W., & De Haan, E. H. F. (2019). Action blindsight and antipointing in a hemianopic patient. Neuropsychologia, 128, 270–275.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Series B Stat. Methodol., 64(4), 583–639.

Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J., & Kriegeskorte, N. (2020). Diverse deep neural networks all predict human it well, after training and fitting. bioRxiv.

Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5), 828–841.

Sun, H.-M., Simon-Dack, S. L., Gordon, R. D., & Teder, W. A. (2011). Contextual influences on rapid object categorization in natural scenes. Brain Res., 1398, 40–54.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv Preprint arXiv:1312.6199.

Tadmor, Y., & Tolhurst, D. J. (2000). Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes. Vision Res., 40(22), 3145–3157.

Talebi, V., & Baker, C. L., Jr. (2012). Natural versus synthetic stimuli for estimating receptive field models: A comparison of predictive robustness. J. Neurosci., 32(5), 1560–1576.

Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., Hardesty, W., Cox, D., & Kreiman, G. (2018). Recurrent computations for visual pattern completion. Proc. Natl. Acad. Sci. U. S. A., 115(35), 8835–8840.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47–63.

The Theano Development Team, Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V., Snyder, J. B., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier, X., … Zhang, Y. (2016). Theano: A python framework for fast computation of mathematical expressions. http://arxiv.org/abs/1605.02688

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520.

Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network: Computation in Neural Systems, 14(3), 391–412.

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychol. Rev., 113(4), 766.

Treisman, A. (1999). Solutions to the binding problem: Progress through controversy and convergence. Neuron, 24(1), 105–110, 111–125.

Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends Cogn. Sci., 5(6), 244–252.

Uttl, B. (2005). Measurement of individual differences: Lessons from memory assessment in research and clinical practice. Psychological Science, 16(6), 460–467.

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: From early perception to decision-making. J. Cogn. Neurosci., 13(4), 454–461.

VanRullen, R., & Thorpe, S. J. (2002). Surfing a spike wave down the ventral stream. Vision Res., 42(23), 2593–2615.

Vigario, R., Sarela, J., Jousmiki, V., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. In IEEE Transactions on Biomedical Engineering (Nos. 5; Vol. 47, pp. 589–593).

Võ, M. L.-H., Boettcher, S. E., & Draschkow, D. (2019). Reading scenes: How scene grammar guides attention and aids perception in real-world environments. Curr Opin Psychol, 29, 205–210.

Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge. Further fractionations and an attempted integration. Brain, 110 ( Pt 5), 1273–1296.

Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107 ( Pt 3), 829–854.

Wen, H., Shi, J., Chen, W., & Liu, Z. (2018). Deep residual network predicts cortical representation and organization of visual features for rapid categorization. Scientific Reports, 8(1), 1–17.

Wichmann, F. A., Janssen, D. H., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., & Bethge, M. (2017). Methods and measurements to compare men against machines. Electronic Imaging, 2017(14), 36–45.

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in python. Front. Neuroinform., 7, 14.

Wilbrand, H. (1892). Ein fall von seelenblindheit und hemianopsie mit sectionsbefund. Deutsche Zeitschrift Für Nervenheilkunde, 2(5-6), 361–387.

Wokke, M. E., Sligte, I. G., Steven Scholte, H., & Lamme, V. A. F. (2012). Two critical periods in early visual cortex during figure-ground segregation. Brain Behav., 2(6), 763–777.

Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychon. Bull. Rev., 1(2), 202–238.

Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 77–84.

Wyatte, D., Jilk, D. J., & O’Reilly, R. C. (2014). Early recurrent feedback facilitates visual object recognition under challenging conditions. Front. Psychol., 5, 674.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). SUN database: Large-scale scene recognition from abbey to zoo. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3485–3492.

Xu, T., Garrod, O., Scholte, S. H., Ince, R., & Schyns, P. G. (2018). Using psychophysical methods to understand mechanisms of face identification in a deep neural network. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. U. S. A., 111(23), 8619–8624.

Young, A. W., Newcombe, F., Hellawell, D., & De Haan, E. (1989). Implicit access to semantic information. Brain Cogn., 11(2), 186–209.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. European Conference on Computer Vision, 818–833.

Zeki, S. (1993). A vision of the brain. Blackwell scientific publications.

Zeki, S., McKeefry, D. J., Bartels, A., & Frackowiak, R. S. (1998). Has a new color area been discovered? Nat. Neurosci., 1(5), 335–336.

Zheng, S., Yuille, A., & Tu, Z. (2010). Detecting object boundaries using low-, mid-, and high-level information. Comput. Vis. Image Underst., 114(10), 1055–1067.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene recognition using places database. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 27 (pp. 487–495). Curran Associates, Inc.

Zihl, J., Cramon, D. von, & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain, 106 (Pt 2), 313–340.

Zimmermann, E., Schnier, F., & Lappe, M. (2010). The contribution of scene context on change detection performance. Vision Res., 50(20), 2062–2068.